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Analytical Measurement of PFOA

For the 49 subjects and their collective weekly samples, plasma (40 uL) was pipetted into
a 2.2 mL polypropylene tube, diluted with 1.56 mL methanol and vortex mixed. The
mixed sample was then centrifuged at approximately 13,000 g for 10 minutes. An 80 pL
aliquot of the supernatant was then transferred to a 500 puL. Eppendorf tube, internal
standard solution added (20 pL; 13C-ammonium perfluorooctanoate, 500 ng/mL in
methanol) and vortex mixed. The sample extract (100 ulL) was then transferred to 96 well
plate and 10 uL injected into the LC/MS/MS.

Chromatographic separation was carried out using a Waters Alliance HT2795 HPLC
(Waters Corporation, Milford, MA). The extract was injected onto a Phenomenex Luna
(2) Mercury MS (20 x 2.0 mm, 5 pm) analytical column fitted with a Phenomenex C18 (4
x 2.0 mm, 5 pm) guard column (Phenomenex, Torrance, CA). A mobile phase, at a flow
rate of 0.75 mL/min consisted of 10 mM aqueous ammonium acetate (A) and acetonitrile
(B). Initially conditions 70 % A and 30% B were held for 0.5 min, then stepped to 2% A
and 98% B and held for 1.5 minutes. Thereafter the mobile phase composition was
returned to the initial conditions and held for two more minutes before the next injection.
Total analysis time was 4 minutes per sample.

The liquid chromatograph was coupled to a Waters Quattro Micro mass spectrometer
operated in negative electrospray ionization mode. To achieve high selectivity and
sensitivity, the instrument was optimized in multiple reaction monitoring (MRM) to
detect perfluorooctanoate (m/z 412.93/368.84) and internal standard (m/z 420.99/375.85).
The resulting chromatograms were analyzed using MassLynx and QuanLynx software.

Calibration and quality control standards were adjusted as appropriate to cover the range
required with increasing dose. The batch acceptance criteria were taken from the
Guidance for Industry — Bioanalytical method validation. PFOA was reported in uM (uM
=413 ng/mL).

Additional Notes on Probability Analyses of Biological Indicators

Nineteen physiological indicators were considered of interests for analyzing their
probability distributions based on their PFOA level. 367 subject record entries were
obtained although only 311 could be used for this analysis, as the remaining 56 did not
have PFOA records. The 311 records were divided into deciles of PFOA concentrations.

The first four indicators are relevant to general category of lipid related clinical chemistries
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e Low density lipoprotein LDL (Figure 6 manuscript) showed at lower PFOA
concentrations, mean LDL was higher with larger variance. At higher PFOA
concentrations, mean LDL was lower, with smaller variance. This difference is
quite distinctive.

e Large buoyant HDL (Figure 6 manuscript) showed no strong difference between
different PFOA levels.

e The total cholesterol (Figure 6 manuscript) and triglycerides (Figure S2) showed
similar pattern as LDL does in Figure 6 manuscript. At lower PFOA levels, there
was a higher mean and variance. At higher PFOA levels, there was a lower mean
and variance.

There were three indicators relevant to renal clinical chemistries,

e For serum creatinine (Figure 11 manuscript), the only conclusion we could draw
was that at higher PFOA levels, serum creatinine had a wider value range than it
did at lower PFOA levels. Otherwise, differences between distributions seemed to
be attributable to the intrinsic variability of creatinine.

e In most cases at lower PFOA concentrations, the means of urea (Figure S3) were
also lower. At higher PFOA levels, the means of urea were also higher. There was
not an observable difference between variance in urea readings across different
PFOA levels.

e Serum uric acid does not vary for different levels of PFOA considering the
invariance of pdfs (data not shown).

There was one indicator considered a non-specific clinical chemistry.

e The probability distributions of lactate dehydrogenase (LDH) did not show any
directional trend and was characterized by strong fluctuations (data not shown).

There were five variables related to the category of liver enzymes:

e According to Figure 8 manuscript, ALT’s probability density distribution was not
expected to exceed 0.1 for any PFOA levels. Subjects with medium PFOA levels
had the smallest variance. There was not much distinction between those with the
highest and the lowest PFOA levels. Highest ALT value was 150 TU/L.

e AST (aspartate aminotransaminase) showed a slight increase for high PFOA levels
(Figure S5). The underlying implication is that PFOA may not be relevant to this
indicator. While comparing the minor variation between different PFOA level
groups, we noticed a slight increase in mean and slight decrease in variance in the
highest PFOA group, which included the subject with the highest 10% PFOA
concentration.

e At any level of PFOA gamma glutamyl transaminase (GGT) (see Figure S5) did
not varying much. The values of GGT spanned a wide range, up to 2000 IU/L. At
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lower levels of PFOA, the range seemed to be wider than at higher levels of PFOA.
At higher levels of PFOA the variance was smaller.

e Alkaline phosphatase (ALP), which corresponds to Figure S5, did not varying
much across the range of PFOA levels. Similarily to GGT, the cohort variance was
smaller when PFOA was high and the range was wider when PFOA was low.

e The previous 5 liver enzyme indicators presented distribution patterns similar to a
Poisson distribution. For total bilirubin (BIL) (Figure S5), subjects in the medium-
high PFOA range appeared to have the smallest variance.

There were three variables related to liver function (i.e., synthesis of coagulation factors).

e According to Figure S6, at higher levels of PFOA, Partial Thromboplastin Time
(PTT) had a broader range, smaller mean and smaller variance. At lower levels of
PFOA, the PTT had a narrower range but higher mean and variance.

e The pattern for fibrinogen (Figure S6) was also somewhat ambiguous. At higher-
level PFOA levels, mean of fibrinogen was relatively lower. There was no clear
distinction in variance or any other observable signatures.

e Activated Partial Thromoplastin Time (APTT) (see Figure S6) had a lower variance
when PFOA levels were high.

There were two indicators under the general category of thyroid:

e TSH (thyroid stimulating hormone) (Figure 9 manuscript) demonstrated a pattern
that appeared similar to a Poisson distribution. When PFOA was high, the variance
in TSH was small. When PFOA was low, there was a wide range of TSH values.

o Free T4 (fT4) (Figure 9 manuscript) was one of few indicators that showed a clearer
signature as PFOA concentrations varied. When PFOA was high, fT4 was higher
with greater variance. When PFOA was low, T4 was lower with smaller variance.
There was a transition between the two stages.

There was no clear distinction between the lowest and highest PFOA level groups with
serum amylase (data not shown). At medium levels, subjects showed smallest variance in
serum amylase around the mean level of 40. Overall, variables that clearly showed more
information than the others were: total cholesterol, LDL, and fT4. More questionable trends
were seen for serum triglycerides, alkaline phosphatase, fibrinogen (FIB), and activated
partial thromboplastin time (APTT).

Additional Notes on Methods
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PKPD models, like the one adopted in this manuscript, are commonly used to formally
integrate available information in order to gain system-level understanding of
pharmacological effects and to make informed decisions. These models are usually
composed of two parts; the pharmacokinetics (PK) part representing what the body does to
the drug (e.g. to understand how PFOA varies over time in the body), and the
pharmacodynamics (PD) part representing what the drug does to the body (e.g. how clinical
measures of exposure change over time). In this paper we used PKPD models supported
by Global Sensitivity and Uncertainty Analyses (GSUA) — that is a probabilistic technique
to characterize importance of model variables via propagating uncertainty in model input
factors to model outputs. This provided smooth, continuous estimates of the effects of
PFOA exposure beyond the discrete categories defined by the data. The information-
theoretic aspect of the model lies in the idea to select the simplest form of the model and
input factors to reproduce the patterns of interest. Thus, our PKPD model does not consider
the whole complexity of the phenomenon (for instance the whole complexity of liver and
thyroid function) — whether possible at all, because it aims to have a “’'macro’’ pattern-
oriented representation of the fundamental processes to reproduce the patterns of interest
simultaneously.

PKPD Model Calibration

“PopED lite”’, that is the computational platform used in this paper, implements standard
compartmental PK models (1-, 2-, and 3-compartment models with linear and nonlinear
elimination, and linear absorption), as well as commonly used PD models. For PD models,
the user can alternatively input a regular mathematical expression in form of a function or
an ordinarily differential equation. This choice of model flexibility is chosen to cover a
wide range of possible PKPD models and at the same time ensure software usability. In
our study we used Eqs. 1-4 for the PKPD dynamics.

PopED lite chooses the optimization criteria from D, Ds, ED, and EDs optimal designs
(Lindhardt and Gennemark, 2014) to fit the optimization need of the user. These are
different optimization criterion used to estimate the probability distributions of model
factors in order to calibrate the model. D-optimality seeks to maximize the determinant of
the information matrix of the model design. This criterion results in maximizing the
differential Shannon information content of the parameter estimates. The Fisher
Information Matrix (FIM) is a way of measuring the amount of information that an
observable random variable ’X’’ carries about an unknown parameter 6 upon which the
probability distribution of “’X’” depends. For a chosen PKPD model structure (Figure 1
manuscript), the user can specify the confidence level of the best guess of the PKPD
parameters (‘“Step 2°° in PopED lite) that in our case is suggested by the data for clinical
biomarkers. If there is no uncertainty, PopED lite optimizes the experimental design using
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the D optimization criterion. Otherwise, it randomly generates sets of parameters following
the uniform distribution in the range specified by the user and conducts ED optimal design
(by taking the expectation of the natural logarithm of the determinant of the FIM for
randomly generated sets of parameters). Considering all model input factors (where model
factors are both state variables and model parameters in Eqs. 1-4) along their pdfs, a Pareto
frontier is determined for assessing the optimal set of values that maximize prediction
accuracy with the minimum variance, or equivalently that minimize the KL divergence for
all predicted patterns. The optimal model minimizes RMSE KL, and AIC for the D-
optimality inferred model factors. In deterministic settings this corresponds to maximizing
the concentration mean (toward observed values) and minimizing its variance. In other
words the Pareto optimality criterion (Pareto, 1965) allows us to get the most accurate
patterns with the least amount of information. The Pareto optimality criterion is used for
the multiobjective problem to maximize prediction accuracy for multiple indicators.

A set of model input factors is on the Pareto optimal frontier if no other input set
simultaneously fits all calibration patterns as well or better. The Pareto frontier approach
coupled to the D optimization method eliminates the need to make input factor choices —
only subject to expert knowledge — by using an intuitive and transparent notion of
optimality as the basis for identifying best-fitting model input sets conditional to patterns
of interest and measured information. This approach, equivalent to Maximum Entropy
approaches, explores all system states by embracing the full probability space of target (or
pattern) outcomes in relation to the full probability space of input factors. The identification
of the Pareto set is done after assigning a probability distribution to all input factors via the
D-optimization method and a full Global Sensitivity and Uncertainty Analyses (GSUA)
(Ludtke et al., 2007; Saltelli et al., 2008) are performed a posteriori to identify variable
importance and interactions for the pattern analyzed. In this paper GSUA was also used for
model selection. The model input factors are calibrated for 1 week at an hour resolution
and predictions are validated for the next 5 weeks of the six- week phase 1 trial.

Global Sensitivity and Uncertainty Analyses

The goal of GSUA is to identify which input factors X’ in the PKPD model have the
highest effect on all (and each) predicted patterns ‘Y’ in terms of their relative importance
and interdependency considering all model factor uncertainty. Because of this ability to
determine model factor importance, GSUA is also used in model selection (during the
calibration/validation phase) for determining the most relevant model in terms of optimal
balance between model complexity, uncertainty and sensitivity that reproduces the
observed PKPD patterns (concentration, cholesterol and fT4). In this paper different
models correspond to different probability distribution functions assigned to the nine model
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parameters to calibrate (leaving aside the state variables). D, i.e. the assigned dose, is
considered as a random model factor. GSUA 1is applied to the discussed PKPD model
introduced by Lindhardt and Gennemark (2014). With GSUA, the set of ordinary
differential equations of the model can be seen as a set of stochastic differential equations
in consideration of the fully probabilistic description of all input factors and their
combinations according to the described dynamics. All factors are modeled as random
variables distributed according to probability distributions inferred from data and expanded
to consider extreme events as well as adjusted by the calibration of the PKPD model.

The initial GSUA of the PKPD model was performed by applying the Sobol method
(Sobol, 1993) for a quantitative analysis of PKPD model-uncertainty propagation. The
Sobol method estimates sensitivity measures which summarize the model's behavior. The
most common measure of sensitivity is the first-order sensitivity index, Si, which
represents the main effect (direct) contribution of each input factor to the variance of the
output. This is given by the ratio of the variance of each model factor (conditional to the
predicted patterns) and the variance of the predicted patterns. The difference S;=1 — ZSi
can be used as an indicator of the presence of interactions of model factors in the model.
Thus, the total sensitivity index is defined as the sum of the relative importance and
interdependency of factors.

The Sobol analysis was later improved by the information-theoretic approach of Lidtke et
al., (2007). The first and second order sensitivity indices (S; and Sjj) are defined as the ratio
of model factor entropy and mutual information (MI) with the total entropy of model
outputs, respectively. M1 1s calculated considering factor X; and all other in interdependent
Xj conditional to 7Y’ (Lidtke et al., 2007) where *"Y’’ is here considering the plasma
concentration and effects variability (cholesterol and fT4). These indices are determined
for the three predicted patterns and the average sensitivity indices are calculated
considering the sensitivity values for all patterns.

These GSUA methods involve five steps: (1) the probability distribution functions (pdfs)
for each input factor are selected (and later improved after the Pareto optimal calibration
(Pareto, 1965)); (2) sample points are generated on the input factor distributions using the
variance-based analysis (Sobol method); (3) the PKPD is executed using all sample points
and a set of outputs is generated; and (4) global sensitivity analysis is performed (i.e.
calculation of sensitivity indices considering variance or entropies via the Sobol and
Ludtke approach, respectively). After step number four, other combinations or the pdfs of
state variables and parameters are used and the multicriteria pattern evaluation is assessing
the performance of each model. The Pareto model, after exploring all potential candidate
models generates the best model and all GSUA inferred model factor importance indices.

The probabilistic PK/PD model shows that average values and other moments of pdfs
capture only a subset of information about the change of biomarkers. In particular we
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observe that pdfs show the non-linear change of biomarkers. Temporal trends capture
only the average change of biomarkers which can lead to wrong conclusions if analyzed
alone. Seemingly statistically insignificant relationships (because of the small linear
regression slope or the large p-value) do not imply insignificant biological processes;
these processes may be highly important considering the values of biomarkers and the
change in their interdependent pdfs. Lastly, we show that by grouping observations, for
meaningful toxicologically relevant categories, becomes useful in order to quantify how
exposures may affect biomarkers; ensemble averages may obscure information about
dose-response relationships that can be derived from the data.

Supporting Table Captions

Table S1. Number of patients studied per cohort by the dose administered and age, height,
and weight of subjects.

Table S2. Tumor site distribution and stage distribution for colorectal and pancreas.

Supporting Figure Captions

Figure S1. Observed dynamic of total cholesterol and fT4 as a function of plasma PFOA
concentration. The black and red bars in the boxes represent the median and the mean
value respectively. Dots above boxes are outliers (upper dots are more than 3/2 times of
upper quartile, while lower dots are less than 3/2 times of lower quartile). The extremes of
the whiskers are the maximum and minimum values for each category excluding outliers.
The extremes of the boxes are the third and first quartiles.

Figure S2. Pdf of serum triglycerides (TGL) for different PFOA serum concentration. TGL
shows a decrease with PFOA serum concentration. The pdf of TGL became more
leptokurtic from a platykurtic/bimodal pdf for higher PFOA levels; this is somewhat
expected since high doses force the biology toward a more “’deterministic’’ state where the
variance of almost all biomarkers decreases slowly.
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Figure S3. Pdf of urea for different PFOA serum concentrations. Urea showed an increase
with PFOA serum concentration. The pdf of urea remains invariant in shape for all PFOA
levels.

Figure S4. Pdf of glucose for different PFOA serum concentration. Glucose is substantially
invariant across all ranges of PFOA values. A longer tail is observed for intermediate value
of PFOA before PFOA starts to plateau over time.

Figure S5. Pdf of serum fibrinogen (FIB), partial thromboplastin time (PTT), and activated
partial thromboplastin time (APTT) for different PFOA serum concentration. PTT showed
a decrease with PFOA serum concentration. The pdf of PTT became more leptokurtic from
a multimodal pdf for higher PFOA levels. FIB showed a decrease with PFOA serum
concentration. The pdf of FIB became more leptokurtic from a multimodal pdf for higher
PFOA levels. APTT did not show any variability with PFOA serum concentration.
However, pdf of APTT became more leptokurtic and multimodal from a multimodal pdf
for higher PFOA levels.

Figure S6. Pdf of alkaline phosphatase (ALP), gamma glutaminase (GGT), and total
bilirubin (TBIL) for different PFOA plasma concentrations. No major difference across
PFOA ranges was seen for these other clinical indicators related to liver function. In general
all these indicators are higher for lower PFOA and the variance of their pdf is smaller for
higher doses.

Figure S7. Pdfs of serum total cholesterol and fT4 for all patients and all patients except
those using drugs for high cholesterol and hypothyroidism. No meaningful changes were
observed.

Figure S8. Patterns of lipid clinical chemistries (total cholesterol, HDL and LDL) as a
function of PFOA for subjects taking and not taking cholesterol lowering drugs.

Figure S9. Patterns of thyroid biomarkers (fT4 and TSH) as a function of PFOA for the
cohort taking and not taking thyroxine.

Figure S10. Patterns of thyroid biomarkers (fT4 and TSH) as a function of PFOA subjects
taking and not taking corticosteroids.

Figure S11. Non-linear relationship between PFOA and Dose. The observed serum
concentration of PFOA increases non-linearly according to a power-law function of the
dose. The inset is showing the non-linear relationships; different values of the dose
correspond to different values of PFOA and the variance of this relationship is larger for
larger doses.

Figure S12. Model accuracy plot. The observed and predicted serum concentrations are
plotted together. The black dots are related to the average concentration of PFOA for the
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multi-resolution binning that has been used (from O hours to 864 hours). The variability in
grey is related to the Monte Carlo simulations made considering the variability of all input
factors of the PKPD model.

Figure S13. Global sensitivity and uncertainty analyses of the PKPD model. GSUA is
performed for the stochastic PKPD model. Si and Sij are the first and second order
sensitivity indices that express the relative importance and interdependence of factors for
predicting target outputs of the model (the plasma concentration of PFOA, total cholesterol
and thyroid function over time). In the information theoretic GSUA equivalent relative
importance (considering Si) between compartment effects and dose-plasma factors are
found. The factor D — dose —is considered as a model factor because it enters the model as
a random variable as well as other factors. ka and ke are power-law distributed while ki2
and ko are log-normally distributed. k1o is exponentially distributed. a and b are uniformly
distributed.
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Mean Median Std Dev Min Max

Age(yr) [ 61.04 63.5 G.080052 36 76
Height (m)] 1.6986 1685  0.08794734 1.51 1.87
Weight (kg] 75.004 75.1 16.88788 485 123.2
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Table S2.

Location Colorectal cancers
Tumor siie N 2lage N
Adenccarcinoma NAS 1 Stage | 1
Breast 1 Stage I 2
Carcinoma NAS 3 Stage HI 5
Cervix 1 Stage 1V 4
Colorectum” 19 NA 7
Esophagus 3 Total 19
Eye 1
Kidney 2 Pancreatic cancers
L.ung 2 Slage N
Neuroendocring NAS 1 ! 0
Pancreas 7 fl 1
Pharynx 1 1l 0
Sarcoma NAS 1 iV 3
Skin 1 NA 3
Small bowsl 1 Total 7
Stomach 2
Thyroid 2
Vulva 1

“Includes caecum
NAS: not gtherwise specified

NA: not available
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